Measuring nonclassicality with silicon photomultipliers

GIOVANNI CHESI,1,2 LUCA MALINVERNO,1 ALESSIA ALLEVI,1,2 * ROMUALDO SANTORO,1 MASSIMO CACCIA,1 AND MARIA BONDANI2,*

1Department of Science and High Technology, University of Insubria, Via Valleggio 11, I-22100 Como, Italy
2Institute for Photonics and Nanotechnologies, CNR, Via Valleggio 11, I-22100 Como, Italy
*Corresponding author: maria.bondani@uninsubria.it

Received 5 October 2018; revised 6 February 2019; accepted 9 February 2019; posted 11 February 2019 (Doc. ID 341271); published 7 March 2019

Detector stochastic deviations from an ideal response can hamper the measurement of quantum properties of light, especially in the mesoscopic regime where photon-number resolution is required. We demonstrate that, by proper analysis of the output signal, nonclassicality of twin-beam states can be detected and exploited with commercial and cost-effective silicon-based photon-number-resolving detectors. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.001371

Quantum features of optical states are often fragile, and their measurement requires advanced detection schemes to achieve sufficient quantum efficiency, low noise, no spurious effects, and photon-number resolution. This holds both in the case of single-photon states [1] and in the case of mesoscopic states [2,3]. That is why quantum optics has triggered research on new photon-number-resolving (PNR) detectors, especially in the past 20 years [4–7]. Among PNR detectors, silicon photomultipliers (SiPMs, also known as multi-pixel photon counters), introduced in late 1990s [8–12], feature photon-number resolution, wide dynamic range, reasonable quantum efficiency (up to 60% in the visible spectral range), and room temperature operability, which make them potentially attractive for quantum optics applications. Nevertheless, the presence of spurious effects has so far [13,14] prevented their exploitation in quantum optics. On the contrary, SiPMs have found a large use for particle-physics experiments and for positron-emission tomography [15]. SiPMs consist of a matrix of avalanche photodiodes connected in parallel to a single output. Each diode is reverse-biased at a voltage value exceeding the breakdown threshold, and it works in Geiger Müller regime, yielding a standard output signal at any detection event. The number of active cells results in an output signal proportional to the overall number of detected photons. In addition to the signal generated by the impinging light, the output also includes dark counts, crosstalks, and afterpulses. The dark-count rate can be decreased by lowering the temperature, while crosstalk and afterpulse probabilities depend mainly on detector architecture and technology. In the present generation of SiPMs, the crosstalk probability has been lowered to few percent, and the afterpulses are almost negligible.

In spite of the high quality of the detectors, the residual imperfections can still severely affect the measurement of quantum features of optical states.

To minimize their influence, we can take advantage of the different temporal occurrences of the spurious effects with respect to the light signal. Dark counts are randomly distributed in time, while crosstalk and afterpulse events are triggered by detection events and thus can occur at a delayed time with respect to the primary detection. As an example, in Fig. 1, we show typical SiPM outputs containing some delayed events. By properly choosing the temporal acquisition gate centered around the peak synchronous with the light pulses (see the different windows in the figure), we can get rid of the contribution of non-synchronous events.

We consider the experimental setup in Fig. 2, in which mesoscopic twin beam (TWB) states are generated by parametric downconversion (PDC) in type-I quasi-collinear interaction geometry. The pumping field is the fourth harmonics of a Nd:YLF laser (4.5-ps pulse duration and 500-Hz repetition rate), while the nonlinear material is a β-barium-borate (BBO) crystal (BBO2, cut angle = 46.7 deg, 6 mm long).

Fig. 1. Typical SiPM outputs in which delayed spurious events are visible. In the figure, the three windows centered around the peak correspond to different integration gates: 50-ns gate (red), 100-ns gate (green), and 350-ns gate (blue).
we set the gate width of the boxcar at the signal peak. For comparison between the acquisition chains, we implemented simultaneous acquisition strategy, we implemented simultaneous acquisition strategy, for the TWB state, we consider the noise reduction factor in the two arms of the TWB [18]. In the case of SiPMs, which are affected by crosstalk and dark counts, the detection output is given by the number of detected photons increased by the dark counts and the crosstalk. Following the model of the detector in Ref. [19], we call \(k \) the binned output (once binned in integer values, \(k \) is integer, noting that \(\langle k \rangle = (1 + \epsilon)(\eta(n) + \langle m_{dc} \rangle) \), \(n \) being the mean number of photons in each of the two arms of the TWB, \(\eta \) the detector quantum efficiency, \(\epsilon \) the crosstalk probability, and \(\langle m_{dc} \rangle \) the mean value of dark counts. The measured noise reduction factor is thus

\[
R = \frac{\sigma^2(k_1 - k_2)}{\langle k_1 \rangle + \langle k_2 \rangle},
\]

where \(\sigma^2(\cdot) \) denotes the variance, and \(k_1 \) and \(k_2 \) are measured shot-by-shot in the two arms of the TWB. It is well known that the condition \(R < 1 \) is sufficient for nonclassicality. In Fig. 3, we plot the measured values of \(R \) as a function of \(\langle k \rangle = (\langle k_1 \rangle + \langle k_2 \rangle)/2 \). The different colors in the figure correspond to different gate widths (see caption for details). In order to superimpose a proper theoretical expectation on the experimental data, we derived a model that takes into account the nonidealities of SiPMs, i.e., the non-unitary quantum efficiency and the crosstalk and dark-count effects, whose statistical properties have been already described in [16]. The most general expression for \(R \) obtained by measuring a multimode TWB state composed by \(\mu \) equally populated modes is

\[
R = 1 + \frac{1}{\mu} \frac{(k_1 - k_2)^2}{(k_1) + (k_2)} + \frac{2\epsilon_1}{1 + \epsilon_1} \frac{(k_1)}{(k_1) + (k_2)} + \frac{2\epsilon_2}{1 + \epsilon_2} \frac{(k_2)}{(k_1) + (k_2)} - \frac{2}{\mu} \frac{(1 + \epsilon_1)(m_{dc}^1) - (1 + \epsilon_2)(m_{dc}^2)}{(k_1) + (k_2)} - \frac{1}{\mu} \frac{(1 + \epsilon_1)(m_{dc}^1) - (1 + \epsilon_2)(m_{dc}^2)}{(k_1) + (k_2)}.
\]

Fig. 2. Experimental setup for the measurement of multimode TWB states.

Fig. 3. Noise reduction factor \(R \) as a function of \(\langle k \rangle \) for different integration gates. Full symbols: experimental data; lines: theory according to Eq. (2). With the assumption in the text, Eq. (2) takes the form \(R = A + B(\epsilon + C) \), where \(A \) and \(B \) are connected to the non-idealities of detectors, while \(C \) takes into account possible errors in the determination of the zero. In the fitting procedure, the value \(\eta \) determined for data with 10-ns gate width (\(\eta = 0.164 \pm 0.0004 \)) was used for all the other datasets. The remaining parameters are: \(\epsilon = 0.07 \pm 0.040 \) (magenta), \(0.062 \pm 0.002 \) (blue), \(0.0437 \pm 0.0008 \) (green), \(0.022 \pm 0.002 \) (red), \(0.0228 \pm 0.0007 \) (black); and \(m_{dc} \) = 0.06 \pm 0.02 (magenta), 0.028 \pm 0.007 (blue), 0.009 \pm 0.001 (green), 0.04 \pm 0.009 (red), 0.0026 \pm 0.0006 (black).
evaluated according to Eq. (2) by assuming a perfect balancing between the two arms, i.e., \(\langle m_{\text{box}} \rangle = \langle m_{\text{hk}} \rangle \), \(\xi = \epsilon \), \(\eta \), and \(\langle k_{\text{1}} \rangle = \langle k \rangle \) and fitting each set of data to find \(\eta \), \(\epsilon \), and \(\langle m_{\text{box}} \rangle \) as the free parameters. By comparing the data corresponding to the different gate widths set for the digitizer, we can argue that the shorter the gate, the lower the square of the fitting parameter \(R \), which is the result consistent with the model of the detection response [16]. Indeed at increasing integration gate, the contribution of spurious effects becomes larger and larger (see the values of the fitting parameters in the caption of Fig. 3), and deteriorates the observation of sub-shot-noise correlations. Moreover, it is clear that the boxcar-gated integrator performs better than the digitizer for the same gate width [see the comparison for \(\tau = 50 \text{ ns} \) in Fig. 3(a), red and green data]. The reason for that is the finite sampling rate of the digitizer, which is not sufficient to reliably sample the very fast output trace in correspondence of the signal peak. To shorten the acquisition gate to the limits, in a subsequent measurement, we set the boxcar gate width to the minimum value compatible with the measurement stability, i.e., \(\tau = 10 \text{ ns} \). The resulting values of \(R \), shown in Fig. 3 as black symbols, are lower than the others, thus indicating an improved capability of detecting the nonclassicality of the TWB state. This last result indicates that the cleanest information on the detected light is contained in the peak of the electronic output signal. For this reason, we implemented a peak-and-hold circuit to detect the peak value of the electronic output signal. The circuit consists of a low-noise shaping amplifier that allows a full digital peak capture procedure with a 500-MS/s digitizer. More technical details about the device can be found in Ref. [16]. In Fig. 4, we show preliminary results for the values of \(R \) as a function of \(\langle k \rangle = \langle (k_{\text{1}}) + (k_{\text{2}}) \rangle /2 \) measured with the peak-and-hold apparatus (red) compared to those measured with the boxcar at \(\tau = 10 \text{ ns} \) (black). We note that the use of the peak and hold improves the performance of the digitizer, but still gives worse results in comparison with the analogical boxcar-gated integrator. Further improvement of the peak-and-hold acquisition system is necessary to assess the limit of such technology.

Once demonstrating the nonclassical nature of the correlations between the parties of the TWB state, we can exploit it to prepare single-beam nonclassical states by conditioning operations [17,20–24]. The conditioning protocol consists of choosing one value of the output, \(k_{\text{cond}} \), measured on one of the two parties of the TWB state, say beam #1, and selecting the corresponding value \(k_{2} \) on the other beam. In general, the conditioning operation modifies the statistics of the original state. In the present case, due to the perfect photon-number correlations in the TWB, for a perfect detection chain, we would expect the conditional generation of the Fock state \(|n_{\text{cond}} \rangle \), but for real experimental schemes, we can only observe a sub-Poissonian state. In order to quantify the sub-Poissonianity of the generated states, different quantities can be evaluated, such as the Fano factor [3,20] and the autocorrelation function of the conditional states [25]. Here we focus on the Fano factor, which, in the absence of crosstalk and dark counts, is

\[
F_{\text{cond}} = (1 - \eta) \left[1 + \frac{1}{\langle m_{2} \rangle + \mu} \right]
\times \frac{\langle m_{2} \rangle (m_{\text{cond}} + \mu) (m_{2} + \eta \mu)}{(m_{\text{cond}} + \mu) (m_{2} + \eta \mu) - \eta \mu (m_{2} + \mu)},
\]

where \(\langle m_{2} \rangle \) is the mean value of detected photons in state #2 before conditioning, and \(m_{\text{cond}} \) is the conditioning value. In the present case, we do not have access to the number of detected photons, \(m \), but only to the output values, \(k \), which include also detector imperfections. By applying the conditioning procedure to \(k \), we get the results in Fig. 5. In particular, Fig. 5(a) contains the measured mean values of the conditional states generated by selecting different values of \(k_{\text{cond}} \) on beam #1 for signal acquisition with the boxcar integrator on 10-ns gate width, which is the best experimental condition we could achieve. Indeed, a value of \(R \) lower-than-1 is a necessary but not sufficient condition for the generation of sub-Poissonian states [26]. The initial mean value of beam #2 is \(\langle k \rangle = 2.52 \) (horizontal line in the figure), a value for which the contribution of dark counts is negligible (\(\langle m_{\text{box}} \rangle = 0.0026 \), see the caption of Fig. 3). By also considering the low value of crosstalk probability (\(\epsilon = 0.0228 \)), we observe that the photon statistics of the detected light [19] is unaffected by detector imperfections. We will thus compare the experimental results with the same theory developed for the case without imperfections [17,20]. Crosstalk effects must be taken into account only to define an effective value of quantum efficiency. From the value of \(R \) we get \(\eta' = 1 - R = \eta (1 + \epsilon) - 2 \epsilon / (1 + \epsilon) = 0.124 \). All the theoretical expectations in Fig. 5 are evaluated by using the effective value \(\eta' \) and the measured number of modes \(\mu \approx 2000 \). As expected, the mean value of the conditional state increases or decreases according to the conditioning value. In Fig. 5(b), we plot the measured Fano factor for the same conditional states shown in panel (a). We note that the values are below 1 and consistent with the theory evaluated according to Eq. (3) (red line). The horizontal line in the figure is at the value of the Fano factor of the original beam #2 (\(F = 1.00126 \)). Finally, Fig. 5(c) shows the statistical distribution of the detected photons for the state obtained by conditioning at \(k_{\text{cond}} = 5 \) (black dots) along with the original distribution on beam #2. Continuous lines in the figure are theoretical predictions [17]. Even if the value of sub-Poissonianity is quite small, the effect is present and interesting: we have obtained a mesoscopic sub-Poissonian state (\(\langle k \rangle_{\text{cond}} = 2.79 \)). We note that similar conditioning operations performed on the data acquired by the digitizer do not perform equally well, and that the best results are obtained for the shortest gate, as expected from the results in Fig. 3.

![Fig. 4. Noise reduction factor \(R \) as a function of \(\langle k \rangle \): peak-and-hold (red) and minimum boxcar gate (10 ns, black). Full symbols: experimental data; lines: theoretical expectation according to Eq. (2). The values of the fitting parameters are: \(\langle m_{\text{box}} \rangle \approx 0 \) (red), 0.0026 ± 0.0006 (black); and \(\epsilon = 0.035 \pm 0.003 \) (red), 0.0228 ± 0.0007 (black).](image-url)
In conclusion, we have presented, for the first time to our knowledge, a detection chain based on SiPMs that can be used to test nonclassicality of mesoscopic quantum states of light. First of all, we have shown that these detectors can reveal the presence of nonclassical correlations between the two parties of a multimode TWB state. Second, we have demonstrated that they can also be used to generate and reconstruct nonclassical photon-number distributions. We notice that the intensity peak-and-hold apparatus in order to make the system as compact and portable as possible. All such features make the technology of SiPMs useful in several contexts of quantum optics and quantum information. For instance, these detectors could be used in more complex detection systems, such as in the homodyne-like detection scheme we recently implemented by means of hybrid photodetectors [27,28]. Moreover, the possibility to properly perform conditioning operations suggests the exploitation of SiPMs for tests of quantum thermodynamics [29–31].

Fig. 5. (a) Mean value of the conditional states at different conditioning values; (b) Fano factor of the conditional states; (c) reconstructed photon-number statistics of unconditioned state (magenta) and conditional state (black) with $k_{\text{cond}} = 5$. The theoretical expectations are shown as lines and well superimposed to the data.

REFERENCES